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ABSTRACT

The importance of and interest to research and investigations of atmospheric composition and its
modeling for different applications are substantially increased. Air quality forecast (AQF) and assessment
systems help decision makers to improve air quality and public health, mitigate the occurrence of acute
air pollution episodes, particularly in urban areas, and reduce the associated impacts on agriculture,
ecosystems and climate. Advanced approaches in AQF combine an ensemble of state-of-the-art models,
high-resolution emission inventories, satellite observations, and surface measurements of most relevant
chemical species to provide hindcasts, analyses, and forecasts from global to regional air pollution and
downscaling for selected countries, regions, and urban areas. Based on published reviews and recent
analyses, the article discusses main gaps, challenges, applications and advances, main trends and
research needs in further advancements of atmospheric composition and air quality modeling and
forecasting.

© 2020 The Authors. Production and hosting by Elsevier B.V. on behalf of KeAi Communications Co., Ltd.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Implications

Proceeding from global challenges and based on published re-
views and recent analyses, the article discusses main gaps, chal-
lenges, applications and advances, main trends and research needs
in further advancements of atmospheric composition and air
quality modeling and forecasting.

2. Introduction

Global challenges, such as climate change, environmental
degradation, rapid urbanization, or pandemics, require a review of
the current understanding and traditional methods of assessing
anthropogenic impacts on the environment, and new multi-
disciplinary approaches of integrated assessments and methods
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for sustainable development. The United Nations 17 Sustainable
Development Goals (SDGs) and 169 Targets aim to end extreme
poverty and create a healthy, sustainable world by the year 2030
[1]. At their core lies the health and well-being of people and our
planet. It means air pollution - the deaths and disabilities it causes
and its close links to climate change - is a huge threat to delivering
on the vision of a better world. Air pollution is specifically
mentioned under at least the following four SDGs: Goal 3 focuses
on good health and well-being; Goal 7 targets access to clean and
affordable energy; Goal 11 focuses on sustainable cities and com-
munities; and Goal 13 tackles climate change. Strategy and actions
to improve air quality - such as switching to cleaner energy, green
economy, smart cities, cooking and transport solutions - will also
address the climate emergency.

During the last decades the importance of and interest to
research and investigations of atmospheric composition and its
modeling have substantially increased. There are several reasons
for these, including increased risks of air pollution for human
health, dramatically increased studies of climate change, much
better computational capabilities of modern supercomputers and
better understanding of physical and chemical processes in the
atmosphere. The World Health Organization [2] reported that
about 7 million people deaths (1/8 of total annual global deaths) are
anticipated due to exposure to outdoor and indoor air pollution (3.7
and 3.3 million, respectively).
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It is important to stress that key air pollutants, particularly
black carbon and methane, also have near-term climate impacts
that accelerate the pace of global warming. Most of the leading
sources of air pollution are among the most significant emitters of
longer-lived greenhouse gases, particularly carbon dioxide and
nitrous oxide. Therefore, there is a critical need to consider the
problem in a complex manner with co-benefits for air quality and
climate as well as interactions of climate change and atmospheric
pollution.

Additionally to annual average air quality assessments for
health impacts, it is also important to realize short-term fore-
casting of peak pollutants concentrations to prevent health ef-
fects from acute episodes. To protect citizens from unhealthy air,
many countries have real-time air quality forecasting (AQF)
programs in place to forecast the concentrations of pollutants of
special health concerns such as ozone (Os3), nitrogen dioxide
(NO3), particulate matter with diameters less than and equal to
2.5 um (PMy 5, and PMyg, respectively) e.g., Ref. [3—11]. Such in-
formation has been used to issue early air quality alerts that
allow government and people to take precautionary measures
such as temporarily banning major emission sources, favoring car
pooling or taking public transportation to reduce air pollution
and minimize their exposures to unhealthy levels of air pollution
[12]. Air quality forecasting has been used to schedule and plan
numerous field campaigns to effectively track pollutant plume
transport and sample pollutant concentrations, which maximizes
the usage of expensive instrumented platforms such as airplanes
and other limited measurement resources e.g., Ref. [13,14]. Ac-
curate AQF can therefore offer tremendous societal and economic
benefits by enabling advanced planning for individuals, organi-
zations, and communities in order to avoid exposure, and reduce
pollutant emissions and their adverse health impacts. Driven by
crucial regulations, societal and economic needs, scientific ad-
vancements, and increasing availability of high performance
computing capacity, AQF has evolved from weather forecasting
and developed into a new discipline that integrates science and
technology from several disciplines including meteorology, at-
mospheric chemistry/air quality, mathematics, physics, environ-
mental statistics, and computer sciences/engineering.

Two main approaches can be distinguished in AQF: empirical/
statistical methods and chemical transport modelling. The empir-
ical/statistical approaches have several common drawbacks for AQF
(see review in Refs. [15—17]; and [18]. For example, they cannot
predict concentrations during periods of unusual emissions (e.g.,
substantial emission reductions that have happened during the
2020 lockdown period due to the COVID-19 pandemic) and/or
meteorological conditions that deviate significantly from the his-
torical record [19]. These statistical models provide neither the
direct linkages between precursor emissions and resultant pollu-
tion nor the interrelationships among multiple pollutants (i.e., the
interactions among pollutants that may potentially exacerbate one
pollution problem while alleviating another problem). Explicit
treatments for such linkages and interactions in AQF models are
essential to the enhancement of understanding of the physical-
chemical system, the improvement of short- and long-term AQF
skill, and the development of integrated emission control strategies
for multi-pollutants. Therefore chemical transport models (CTMs)
are much more commonly used in AQF systems and in this article
we will consider mostly chemical transport modelling-based
approaches.

There are several comprehensive review papers, e.g.,
Refs. [7,15,17,20—22,23]; and [18] analyzing current major 3-D
global and regional real-time air quality forecasting models and
identifying areas of improvement in meteorological forecasts,
chemical inputs, and model treatments of atmospheric physical,
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dynamic, and chemical processes. We will not thus provide a his-
torical overview of existing modeling experience, but based on
published reviews and recent analysis, will focus in this article on
advances, main trends and research needs in further developments
of atmospheric composition and air quality modeling and
forecasting.

For example [15], reviewed existing experience and identified
several inaccuracies in AQF and their possible causes, including
different factors related to:

- meteorology, e.g., inaccurate characterization of the transport
and planetary boundary layer (PBL) meteorological processes
such as turbulent mechanisms and vertical convection, cloud
attenuation of photolysis, local drainage and sea-breeze circu-
lations and PBL heights;

boundary conditions (BCONs) including inadequate represen-
tations of BCONs of O3, PMy 5, and PMy);

emissions including uncertainties in anthropogenic emissions of
sulfur dioxide (SO;) and volatile organic compounds (VOCs),
wildfire emissions, particular matter (PM), dust, pollen and
other meteorology-dependent emissions;

model process treatments, e.g., inaccurate model treatments
such as urban processes, gas-phase chemistry, in-cloud oxida-
tion of SO,, secondary organic aerosol (SOA) formation, and dry
and wet deposition.

As [24] stressed, to reduce short- and long-term exposure of
public to air pollution, especially in developing countries, an
internationally coordinated and integrated air quality monitoring,
analysis and prediction system must be developed by effectively
combining scientific and technological progress in observing ca-
pabilities (in situ and space), mathematical models, data analyses,
and computer science.

There are the following trends in the development of modern
atmospheric composition modelling and AQF systems:

- Seamless prediction of the Earth system approach;

- Online coupling of atmospheric dynamics and chemistry
models;

- Multi-scale prediction approach;

- Subseasonal to seasonal forecast;

- Emission modeling for improved emission data;

- Multi-platform observations and data assimilation;

- Data fusion, machine learning methods and bias correction
techniques;

- Ensemble approach;

- Fit for purpose approach;

- Impact based forecast.

Given the large scope and many focuses of this field, the paper
focuses on selected topics. The advances in several important
domains, e.g., in meteorological processes and atmospheric
chemical mechanisms for air quality (AQ) modeling, as well as
emission modeling for improved emission data are discussed in
other recent publications: by Refs. [25—27] and by Ref. [28].
Therefore we will not touch these issues in this article and will
concentrate on the following: (i) Seamless prediction of the Earth
system, including online coupled chemistry-meteorology
modelling, multi-scale prediction systems and seasonal fore-
casts; (ii) utilizing modern observational data in models,
including data assimilation and data fusion algorithms, machine
learning methods, bias correction techniques and ensemble
methods; (iii) fit for purpose and impact based forecast
approaches.
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3. Toward seamless prediction of the earth system
3.1. Seamless environmental prediction systems

The new generation of integrated atmospheric dynamics and
composition models is based on the seamless Earth System
Modelling (ESM) approach [29] to evolve from separate model
components to seamless meteorology-composition-environment
models to address challenges in weather, climate, and atmo-
spheric composition fields whose interests, applications, and
challenges are now overlapping. “Seamless” is considered in rela-
tion to, at least, two aspects. Firstly, at the process-scale, it refers to,
for example, the coupling within a model of meteorology and
composition processes to represent the two-way interactions be-
tween composition and radiative processes or microphysics, or the
consistent treatment of water vapor. Secondly, to be considered in
terms of time-space-scales, it refers to the absence of discontinu-
ities in model behavior when used at multiple temporal or spatial
resolutions to have, for example, consistent treatment of black
carbon for air quality and climate applications or consistent
coupling interval between land, ocean and atmosphere.

In a more general sense, the approach considers several di-
mensions of the seamless coupling, including:

e Time scales: from seconds and nowcasting to decadal and
centennial (climate) time-scale;

e Spatial scales: from street-level to global scale (downscaling and

upscaling);

Processes: physical, chemical, biological, social;

e Earth system elements/environments/components: atmo-
sphere, hydrosphere, lithosphere/pedosphere, ecosystems/
biosphere;

o Different types of observations and modelling as tools:
observations-model fusion, data processing and assimilation,
validation and verification;
Links with health and social consequences, impact, assessment,
and services and end-users.

Different aspects of methodology and research needs for real-
isation of the Seamless Prediction Systems, as a part of WMO
research strategy, are presented and discussed in the book
“Seamless Prediction of the Earth System: From Minutes to
Months” [29].

The ensemble approach integrates modeling results from
different models, participants and countries, or at one center with
one model, e.g., of the European Center for Medium-Range
Weather Forecasts (ECMWEF), but with perturbations to initial
conditions and physical parameterizations (stochastic physics).
This allows information on model process diversity to inform un-
certainty in our understanding of Earth system linkages, responses,
and impact assessments. It is possible to utilize the full potential of
a hierarchy of models: scenario analysis, forward and inverse
modeling, modeling based on measurement needs and processes.
The models are evaluated and constrained by available in-situ and
remote sensing data of various spatial and temporal scales using
data assimilation and top-down modeling. The analyses of the
anticipated large volumes of data produced by available models and
sensors will be supported by a dedicated virtual research platforms
developed for these purposes.

Linking between the temporal and spatial scales for modelling
and observations is a key aspect of the seamless prediction
approach. Both short- and long-term measurements from different
observational platforms including field campaigns, laboratory,
chamber experiments, satellite, etc. represent valuable contribu-
tions to evaluation and verification of different models as well as for
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studying and modelling of physical-chemical-biological processes
at multi-scales and integrated assessment for environment, popu-
lation, ecosystems, etc. In particular, a hierarchy framework of such
modern multi-scale models for different elements of the Earth’s
system, integrated with the observation system, is being developed
within the Pan-Eurasian Experiment (PEEX) multi-disciplinary
programme [30,31]. Moreover, the models will inform the devel-
opment of the in-situ monitoring component of the PEEX Research
Infrastructure by providing information on regions, where specific
processes or interactions may be important to measure with new
observational capability.

3.2. Coupled chemistry-meteorology modeling (CCMM)

The use of a coupled meteorology-chemistry model, e.g., WRF-
Chem [32] or Enviro-HIRLAM [33], for AQF represents a signifi-
cant advancement in routine operational AQFs and would greatly
enhance understanding of the underlying complex interplay of
meteorology, emission, and chemistry. Model evaluation demon-
strates that a modeling approach based on CTMs has skills consis-
tent with or better than many statistical forecasting tools [34,35].
Online-coupled meteorology atmospheric chemistry models
(CCMM) have greatly evolved in recent decades [36—40]. Although
mainly developed by the air quality modeling community, these
integrated models are also of interest for numerical weather pre-
diction and climate modeling as they can consider both the effects
of meteorology on air quality, and the potentially important effects
of atmospheric composition on weather. Migration from offline to
online integrated modeling and seamless environmental prediction
systems [41] are recommended for consistent treatment of pro-
cesses and allowance of two-way interactions of physical and
chemical components, particularly for AQ and numerical weather
prediction (NWP) communities.

Regarding AQF and atmospheric composition modelling, the
CCMM approach will certainly improve forecast capabilities as it
allows a correct way of jointly and consistently describing meteo-
rological and chemical processes within the same model time steps
and grid cells. Applications that may benefit from CCMM are
numerous and include [42]: chemical weather forecasting (CWF),
numerical weather prediction for precipitation, visibility, thun-
derstorms, etc., integrated urban meteorology, environment and
climate services, sand and dust storm modeling and warning sys-
tems, wildfire atmospheric pollution and effects, volcano ash
forecasting, warning and effects, high impact weather and disaster
risk, effects of short-lived climate forcers, earth system modeling
and projections, data assimilation for CWF and NWP, and weather
modification and geo-engineering. Online integrated models,
however, need harmonized formulations of all processes influ-
encing meteorology and chemistry.

Based on the EuMetChem activities [43], CCMM symposium [41]
and further discussions (e.g. Ref. [29,42], the following recom-
mendations for future research have been identified.

For air quality forecasting and atmospheric composition studies
the following research needs are stressed:

o Better representation of aerosol processes and their formation
(especially in terms of chemical speciation), heterogeneous
chemistry and interactions with cloud;

e Experiments that are specifically defined to look at chemistry-
cloud-microphysics at different scales;

e More field experimental data to evaluate online coupled
models;

o Improved numerical and computational efficiency of the models
as the complexity of applications grows (e.g., scales);
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o Intercomparisons both at global and regional/urban scale for AQ,
NWP, and climate should continue; intercomparisons that are
cutting across all 3 fields should be considered.

For meteorological studies and specifically NWP the following
research is needed:

Developing diagnostics and validation methodologies to more
explicitly separate different effects of the intertwined feedback
processes;

More collaboration between operational centers and research
communities. This needs to be focused on providing schemes
with an impact that is proven to be valuable enough to justify
the cost of their implementation (even for relatively modest
increases in CPU);

More evaluation of aerosol properties routinely, not only for the
indicators PM10 and PM2.5 but also for optical, chemical and
microphysical properties;

o The treatment of the indirect effect of aerosols is one of the key
uncertainties; ice nucleation processes and parameterizations
are less well defined than CCN formation processes and
parameterizations;

Further research is needed to better understand the importance
of including more accurate representation of aerosol properties
in satellite retrievals;

Research on the impact of online modeling of aerosols on visi-
bility forecasting, observational constraints on the causes of
light extinction and on parameterizations for calculating
extinction given model parameters.

For climate research the following main developments in
CCMM:s are needed:

Improve our understanding of indirect effects (e.g.,, BC on

clouds);

Develop CCCMs with prognostic aerosols to assess the tradeoff

between a more complex aerosol representation on the one side

and model resolution, or the atmosphere-ocean coupling, on the
other side;

o Test model performance in terms of relevant physical, chemical,
and radiative processes and mechanisms (in contrast to just
testing mean performance);

e Test model performance in terms of tropospheric dynamics/

meteorology and their effect on composition (and vice-versa).

3.3. Multi-scale prediction approach

The AQ monitoring, analysis and forecasting systems should
operate at different spatial scales from the global scale to the
regional, national, urban and sub-urban scales. In previous decades,
AQ models usually were applied only for a specific spatial scale:
global, regional, meso-, local, urban or street scales. During last
decades research achievements, high-performance computational
resources, and real time data access possibilities make it realistic to
build a full chain of multi-scale AQ modelling and forecasting.

Zooming or special nesting grid techniques are usually required
to transfer model information between the scales. Grid nesting is
the most common method, being employed in most CTMs. Many of
the currently used CTMs (e.g., WRF-Chem, CAMXx [44], CMAQ [45])
allow for grid nesting. Grid nesting is further classified in one-way
nesting (sometimes referred to as downscaling), when values of the
modelled variables at a coarse resolution are used as boundary
conditions for finer (subscale) resolution runs, and two-way nest-
ing, when information from the higher resolution scale is in
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addition transmitted across the boundaries to the coarser
resolution.

For example, the European Copernicus Atmosphere Monitoring
Service (CAMS) provides such AQF from global to regional [46,47]
and possibly urban scales (FUMAPEX, MEGAPOLI) for European
countries [6,48—50]; GURME [51,52], MarcoPolo & PANDA projects
[53] developed and tested similar AQF systems for Asian countries
(China, India) and selected cities (e.g., Shanghai, New Delhi, etc.).

The development of models dedicated to address urban AQ is-
sues requires also some urbanization of meteorological/ NWP
models [29] and a good set of data regarding urban structure and
many other characteristics. There are important initiatives in that
direction providing a more detailed atmospheric dataset, e.g.,
pollutant fluxes and concentrations, temperature, wind, pressure,
and moisture, and also providing important parameters to describe
urban features in an aggregate manner that can be introduced into
urban scale models with resolutions of 200—2000 m and corre-
sponding physical options in single and multi-layer urban canopy
models (Ching et al., 2018).

To forecast street level air quality the downscaling with specific
(e.g., obstacle-resolved computational fluid dynamics (CFD) type or
parameterized) microscale models is needed. CFD models coupled
with mesoscale models can provide this high spatial resolution (up
to 1-10 m) because they explicitly resolve the turbulent flow
around buildings (see e.g., Refs. [49,54,55]. However, the required
computational time increases and it would be difficult, at a
reasonable CPU time, to use a direct coupling between mesoscale
and CFD models for forecasting purposes. In the near future, CFD
models could become an appropriate tool for forecasting due to the
increase of computational resources. Nowadays, a database created
with CFD simulation of several scenarios represents the best
compromise to perform the downscaling of the mesoscale outputs.
Another alternative is the use of a parametrized microscale model
(e.g., Ref. [56,57]. These models do not resolve explicitly the tur-
bulent flow but use parametrized relations between urban
configuration and flow and dispersion variables within the urban
canopy. This fact allows a simplified representation of concentra-
tions within the urban canopy in reasonable computational time
for forecasting purposes.

Seamless unified modelling system that allows a single platform
to operate over the full scale (i.e., across-scale) will represent a
substantial advancement in both the science and the computa-
tional efficiency. The Model for Prediction Across Scales for Atmo-
sphere (MPAS-A) being developed by the U.S. National Center for
Atmospheric Research is a good example of such a modelling sys-
tem (mpas-dev.github.io; [58]. MPAS-A uses the unstructured
Voronoi meshes (hexagons) and C-grid discretization. The former
allows for smoothly-varying mesh transitions and local refinement.
The latter solves for normal velocities on cell edges and is well-
suited for higher-resolution, mesoscale atmosphere and ocean
simulations. Two other examples of recently developed
community-based, coupled, comprehensive multi-scale Earth
modeling systems are the MUIti-Scale Infrastructure for Chemistry
and Aerosols — MUSICA [59] and the Unified Forecast System [60]
to support the Weather Enterprise and to be the source system for
NOAA'’s operational numerical weather prediction applications
including the atmospheric composition.

Major challenges include globalization/downscaling with
consistent model physics and two-way nesting with mass conser-
vation and consistency. Such a unified global-to-urban scale
modelling systems will provide a new scientific capability for
studying important problems that require a consideration of multi-
scale feedbacks.
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3.4. Subseasonal to seasonal forecast

Significant progress has been made in recent decades on
medium-range weather forecasts and seasonal climate predictions.
Because of a difficult time range that is not as well defined as
weather and seasonal forecasting, subseasonal forecasting has not
received as much attention as weather or seasonal forecasting.
Advancements in real-time weather and air quality forecasting
models and the data analysis techniques have made reasonably
accurate predictions and data analytics for extended timeframes
possible. Seasonal and subseasonal forecasts are generated at
monthly intervals out to 7 months and weekly intervals out to 5
weeks, respectively. The subseasonal to seasonal forecast will
bridge the gap between weather and climate and bring the weather
and climate communities together to tackle the intervening time
range, harnessing shared and complementary experience and
expertise in forecasting, research and applications, toward more
seamless weather/climate prediction systems and more integrated
weather and climate services [61,62]. Seasonal and subseasonal
forecasts deliver easy-to-use, predictive analysis that anticipates
market behavior and potential risks for scientific communities,
government, and many sectors such as agriculture, aviation, media,
energy, and insurance. For example, they can be used for market
shifts that may affect profitability in the 3- to 5-week, 1- to 4-
month, and 5- to 7-month timeframes. In particular seasonal
forecast for wildfires and smog pollution is underdeveloped within
the VFSP-WAS [63].

Subseasonal weather and air quality forecasts have been iden-
tified as research and operation priorities by WMO [62,64] and
several countries such as the U.S [65,66]. Subseasonal forecasts will
have large societal benefits, as many market behaviors and man-
agement decisions in agriculture and food security, water, risk
reduction of weather disaster and hazards (e.g., drought, wildfire,
heatwave, cold wave) and health fall into the subseasonal to sea-
sonal time range.

4. Improvements by utilizing modern observation data and
ensembles

One of the key modern trends to improve AQF systems is
developing new methods of utilizing modern observational data in
models, including data assimilation and data fusion algorithms,
machine learning methods and bias correction techniques.

4.1. Multi-platform observations and data assimilation

During last decades the techniques and possibilities of multi-
platform (in-situ, ground, aircraft and satellite remote sensing)
observations of air pollution and atmospheric parameters, as well
as their near real time (NRT) or real time (RT) availabilities and
citizen science opportunities [67], are dramatically improved and
increased. This leads to a revision of concepts of AQF and impor-
tance of data assimilation (both chemical and meteorological
measurements) in AQF systems [23,68] and measurement-model
fusion for air quality and deposition assessments [69].

In particular, the new generation of geostationary satellites,
consisting of GEMS (Asia), Sentinel-4 (Europe) and TEMPO (USA),
expects to provide an unprecedented view of air quality from space
[70—72]. Given these planned missions, it is even more imperative
to develop effective data assimilation systems for AQF that opti-
mally incorporate satellite information.

Correspondingly, experience in the assimilation of chemical and
aerosol observations from ground-based and satellite instruments
into AQF and CCMM has grown significantly [23,29,73—75].
Optimal interpolation, variational approaches, Ensemble Kalman
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filter (EnKF) or hybrid techniques combining the advantages of
both variational and EnKF techniques are all applicable in CTMs
[76]. Other methodologies such as inverse modelling of emission
fields appear as a promising technique to improve the skill of AQF
and may have a stronger impact for short-lived pollutants than
chemical data assimilation (CDA) has on initial conditions. CDA has
been implemented in many operational AQF and some CCMM
models, such as the ECMWF/Copernicus Integrated Forecast System
(IFS-CTM) [47], the Weather Research and Forecasting Model
coupled with chemistry (WRF-Chem) [77], and the Goddard Earth
Observing System Model, version 5 (GEOS-5) [78]. CDA is used to
initialize air quality forecasts and for retrospective analysis of at-
mospheric composition. It has been shown that corrections to
emissions as part of the CDA procedure can help to improve the
impact of the observations on the predictions.

A main challenge of CDA is the limited information content of
the atmospheric composition observations [41]. More routine
evaluation of aerosol properties, not only for the indicators PM; 5
and PMyg, but also for optical, chemical, and microphysical prop-
erties, are needed. Spatial and temporal coverage of important
parameters such as aerosol composition is limited because of
network design, viewing geometry, or cloud cover masking [29].
Also, vertically integrated observations, such as aerosol optical
depth or total column, have to be distributed to model levels.
Furthermore, biases between different observing systems (e.g.,
satellite data, lidars, ceilometers, ground observations) should be
removed before the assimilation [23].

Although the importance of assimilating atmospheric compo-
sition data into CCMM to get realistic chemical fields has been
demonstrated, there is little experience in assimilation of both
meteorological and chemical observations into CCMM. Further
research is needed to better understand the importance of
including more accurate representation of aerosol properties in
satellite retrievals.

4.2. Measurement-model fusion, machine learning and bias
correction techniques

Tremendously growing number and different types of obser-
vations became available during the last decade, require and give a
strong impulse for development of new methods for measurement-
model fusion to improve AQF [69]. We have considered in previous
sections first of all most applicable 3D numerical atmospheric
transport models and classical data assimilation methods, however
other types of data fusion algorithms, such as the statistical
methods, optimal interpolation, objective analysis, bias correction,
as well as relatively new artificial intelligence, neural network,
machine learning and hybrid methods, were also actively devel-
oped during last decades. Several recent publications considered
such methods and analysed their applicability (e.g., Ref. [16,18,69].
Statistical methods are simple, but require a large amount of his-
torical data and highly depend on them. Artificial intelligence,
neural network, and machine learning methods have better per-
formance, but can be unstable and also depend on data. Hybrid or
combined methods have a better quality. Such methods can also
improve AQF utilizing additional observational data. For example
[79], applied machine learning methods for ozone ensemble fore-
cast, they performed sequential aggregation based on ensemble
simulations and past observations. Further development of ma-
chine learning methods provides a potential way to bridge the
resolution gap between global, low-resolution model output and
local, high-resolution information requested by end users. How-
ever, further research is needed to identify applications where
machine learning may have particular advantages.

Another broadly used approach to improve the AQF model
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performance is bias correction techniques. They have been proven
to be effective in improving the forecasting accuracy and applied to
the routine O3 and PM; 5 forecasting in many forecasting models
such as the U.S. NOAA’s operational forecasting model, the National
Air Quality Forecast Capability (NAQFC) [80—84]. Several bias
correction methods have been implemented in air quality fore-
casting models, e.g., for wildfire plumes. The simplest and also most
commonly-used method is the mean subtraction method, in which
the mean bias is subtracted from the forecasted values at each
monitoring site. This method, however, does not always guarantee
a positive value. The second approach is the multiplicative ratio
adjustment method, in which the forecasted value is multiplied by
the mean ratio of the sum of the observed value to the sum of the
forecasted value at each monitoring site. This alternative correction
guarantees that the concentrations will remain positive and in-
creases forecasting skill, but the ratio-adjustment method provides
additional improvement over the mean subtraction method for
models with the highest biases. The third method is to force the
zero differences between observed and simulated seasonal means
by using an empirical linear fit between forecasted and bias cor-
rected values. More advanced bias correction methods have also
been developed and applied for improvement of AQF, e.g., the
Kalman Filter (KF) bias correction [85,80—82,86,87]. KF has been
combined with the Kolmogorov-Zurbenko (KZ) filter to correct
biases in air quality forecasting [80]. KZ filter can be used to sepa-
rate observed and simulated time series data into the short-term
and baseline components to discern major systematic model er-
rors [11,88—90]. The former is influenced by prevailing weather
conditions and the latter is influenced mainly by emissions,
boundary conditions, and other slow-varying processes. The KF bias
correction technique can be applied to the baseline component of
the time series at a monitoring location, which can significantly
improve the forecasting accuracies. The KF or the coupled KF-KZ
bias correction method can be potentially extended to locations
where no monitor information is available for these methods to
generate bias-corrected spatial maps of forecast products.

The performance of bias-corrected forecast depends on the
performance of the raw model forecast to which the bias-correction
method is applied. While bias correction methods have shown
obvious short-term benefits, the improvements of model inputs
such as emissions and boundary conditions and model represen-
tations of key chemical and physical processes such as secondary
organic aerosol formation are necessary to address the mechanistic
deficiencies of the AQF models for long-term benefits.

4.3. Ensemble approach

Ensemble forecasting is a numerical prediction method that is
used to produce a representative sample of the possible future
states of a model system. Ensemble forecasting can be imple-
mented using multiple models or one model but with different
inputs (e.g., varying meteorological input forcings, emission sce-
narios, chemical initial conditions) or different process parameters
(e.g., varying chemical reaction rates) or different model configu-
rations (e.g., varying grid spacings) or different models. Ensemble
forecasting has shown significant statistical improvements for both
O3 (e.g. Ref. [86,91—93], and PM;5 forecasts over any individual
forecast [94]. Multi-model ensemble air quality forecasting has
been emerging for AQF on global scale and regional scales (e.g., over
Europe, US. and China) (e.g., Ref. [86,87,91-96]; Solazzo et al,,
2012; Monteiro et al., 2013; Zabkar et al., 2013; Im et al., 2015;
[53,97]. For example, Delle Monache et al. (2004) performed one of
the first multi-model real-time O3 forecasts over the U.S. The
regional air quality production of the Copernicus Atmosphere
Monitoring Service (CAMS) is based on ensemble of seven state-of-
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the-art numerical air quality models developed in Europe. Under
the MarcoPolo-PANDA EU FP7 Projects (http://www.marcopolo-
panda.eu/), nine different models were used for multi-model
ensemble over China [53,97]. The most recent International Coop-
erative for Aerosol Prediction (ICAP) multi model ensemble (ICAP
MME) consists of nine global models [98]. Multi-model ensemble
results provide a range and an indication of the robustness of the
forecasts and help to improve the accuracy of chemical weather and
air quality forecasting.

The ensemble forecast is usually a weighted linear combination
of the individual ensemble members, in which the weight factors
may be equal or unequal for individual members. As such, it is
subject to the inherent limitations of individual ensemble members
and is sensitive to the selected weighting factors. More advanced
ensemble forecast approaches have been developed. One such
method is the ensemble forecast of analyses (EFA) of [79]. EFA
couples an ensemble forecasting approach (i.e., sequential aggre-
gation) with CDA techniques to forecast an analysis from data
assimilation, instead of observations.

5. Fit for purpose approach and impact based forecast

The Earth system modelling approach provides a broad AQF
platform for different applications, but the modelling system
should fit for purposes and be optimized for specific tasks. For
example, for smog pollution from wildfires the problem is more
complex than for AQF with fixed anthropogenic emission sources
and includes first of all the forecasting of fire danger and sources of
wildfire emission, including detection of sources, mass of emitted
species, plume rise, fire behaviour, etc. Research challenges facing
fire and smoke prediction were evaluated by the Interdisciplinary
Biomass Burning Initiative (IBBI) [23,63,99].

As mentioned, there are also several user communities (e.g.,
NWP, climate) and specialized applications of AQF system de-
velopments for long-term prediction and specific episodes of at-
mospheric harmful contamination, affecting not only health but
many other sectors of economics. In particular, sand and dust
storms pose a major challenge to sustainable development in arid
and semi-arid regions of the planet. Airborne dust presents serious
risks for human health [100]. Sand and dust storms are also detri-
mental for ecosystems and diverse socio-economic sectors. Surface
dust deposits are a source of micro-nutrients for both continental
and maritime ecosystems. Although dust can work as fertilizer, it
has many negative impacts on agriculture, including reducing crop
yields by burying seedlings, causing loss of plant tissue, reducing
photosynthetic activity, and increasing soil erosion. Reductions in
visibility due to airborne dust also have an impact on air and land
transport. Poor visibility conditions are a hazard during aircraft
landing and taking off operations — flights landings may be diver-
ted and departures may be delayed. Dust can also scour aircraft
surfaces and damage engines. Reduced radiation at the surface has
an impact on the output from solar power plants, especially those
that rely on direct solar radiation. Dust deposits on solar panels are
a main concern of plants operators. Volcanic eruptions contribute
to natural aerosols directly via emissions of ash and other partic-
ulates, or indirectly through the release of sulfur gases that sub-
sequently condense to form sulfate aerosols. Volcanic aerosols are
particularly important for aviation safety and climate modelling, as
was witness by the eruption of the Icelandic Volcano Eyjafjal-
lajokull, that paralyzed for several days air traffic throughout
Europe.

Society is impacted by both long-term and short-term changes
to atmospheric composition. Volcanic ash, desert dust, natural and
anthropogenic gas emissions are good examples demonstrating
both immediate impacts, for example, on aviation and human
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health — and longer-term, including climate forcing and impacts
from the changing atmospheric composition. While both present a
range of challenges, the former places considerable additional de-
mands in terms of data timeliness and temporal and spatial reso-
lutions. This near-real-time need for observations is indeed a
common requirement across a range of impacts, but one that is not
always conducive to the significant processing involved in pro-
ducing fully assured atmospheric composition data. However,
timely data can be produced and has the potential to be of
considerable use for a wide range of applications. In recognition of
this, the WMO Global Atmosphere Watch Programme [101] has
identified the need for increased support for the development and
expanded use of services and research activities concerning the
forecasting of atmospheric composition and its induced environ-
mental phenomena.

So, the AQF should not be limited only to the concentrations of
air pollutants but should also consider their impacts on different
sectors (e.g., health, agriculture, land transport, aviation, energy,
etc.) and provide warning and recommendations proceeding from
different thresholds, risks, and cost functions (Fig. 1). Such impact-
based forecast and assessment systems will help stakeholders and
responsible agencies to improve air quality and public health,
mitigate the occurrence of acute harmful air pollution episodes. The
suggested approach combines state-of-the-art models, high-
resolution emission inventories, space observations and surface
measurements of most relevant chemical species to provide hind-
casts, analyses, and forecasts of regional air pollution in a specific
region (using boundary and initial conditions from global AQF
system such as the CAMS) and downscaling for selected countries
and urban areas.

The still unsolved challenge to make the produced AQF infor-
mation available to end users in a simple way fitting for purpose. So,
such a common platform for air quality forecasts would increase
the usability of these systems and make it much easier to integrate
them into decision-making processes.

6. Summary and perspectives

Further improvements to AQF and modeling systems will likely
follow several directions:

— Online coupling of atmospheric dynamics and chemistry
models,

Global Transitions 2 (2020) 261-270

— Better representation of aerosol processes and feedbacks, their
interactions with clouds and radiation,

— Improved data assimilation and fusion, machine learning, and
artificial intelligent methods

— Toward seamless Earth system modelling,

— Multi-scale prediction approach,

- Subseasonal to seasonal forecasting,

- Impact based forecast and fit for purposes systems.

Air quality forecast and assessment systems help decision
makers to improve air quality and public health, mitigate the
occurrence of acute air pollution episodes, particularly in urban
areas, and reduce the associated impacts on agriculture, transport,
economy, ecosystems and climate.

Seamless modelling is a prospective way for future single-
atmosphere modelling systems with advantages for applications
at all space- and timescales for multi applications not only for air
quality, but also for NWP, climate and other atmospheric compo-
sition models.

The advance approach combines an ensemble of state-of-the-art
models, high-resolution emission inventories, space observations,
and surface measurements of most relevant chemical species
(coarse and fine PM, ozone, reduced and oxidized nitrogen, etc.) to
provide hindcasts, analyses and forecasts of from global to regional
air pollution and downscaling for selected countries and urban
areas.

Dramatically increasing possibilities of multi-platform (in-situ,
ground, aircraft and satellite remote sensing) observations in real or
near-real time, as well as citizen science opportunities, lead to a
revision of concepts of AQF, increase importance of data assimila-
tion techniques. New measurement-model data fusion, machine
learning and artificial intelligence methods have a good potential to
bridge the resolution gap between global, low-resolution model
output and local, high-resolution information required by users.

Improved data assimilation, both in terms of techniques and
choice of aerosol variables to be assimilated. Key questions for the
future are whether there is a benefit to move from assimilating AOD
to assimilating clear-sky radiances in the shortwave spectrum and
how to make the best possible use of vertical profiles from lidar
observations.

Although we did not focus deeply on emission modelling
methods in this paper, it is important to highlight the importance of
emission data and models as one of the key uncertainties in AQF. In
particular, dramatic changes of emissions from COVID-19
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Fig. 1. Example of impact-based forecast and assessment systems for the WMO Sand and Dust Storm Warning Advisory and Assessment System (SDS-WAS) (after [102].
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lockdown-related reduced activities, as well challenges with
meteorology-dependent emissions (e.g., wildfires, dust storms,
pollen, VOC, secondary aerosols and climate forcers), required
further research efforts in online monitoring and assessments of
emissions using remote sensing observations, crowdsourcing data,
modern inverse models, and machine learning and artificial intel-
ligent methods.
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